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Modeling and direct simulation of near-field granular flows

T.I. Zohdi *

Department of Mechanical Engineering, 6195 Etcheverry Hall, University of California, Berkeley, CA 94720-1740, USA

Received 9 April 2004
Available online 12 September 2004
Abstract

A wide range of modern applications have emerged where a successful analysis requires the simulation of flowing
granular media which simultaneously incorporates near-field interaction between charged particles and intergranular
contact. Such systems naturally arise in powder processing, micro- and nanotechnology, as well as in applications aris-
ing from the study of aerosols, epitaxy and astro- and geophysics. The focus of this communication is to develop models

and physically-based high-performance solution strategies for the direct rapid simulation of such flowing granular media.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Granular flow; Near-field effects; Direct simulation
1. Introduction

The study of granular media is wide ranging. Classical examples include the flow of ‘‘natural’’ materials
such as sand and gravel associated with coastal erosion, landslides and avalanches. In this regard, as rep-
resentative examples, we refer the reader to the extensive works of Hutter and collaborators: Tai et al.
(2002, 2001a,b), Gray et al. (1999), Wieland et al. (1999), Berezin et al. (1998), Gray and Hutter (1997),
Gray (2001), Hutter (1996), Hutter et al. (1995), Hutter and Rajagopal (1994), Koch et al. (1994), Greve
and Hutter (1993) and Hutter et al. (1993), as well as the works of Behringer collaborators: Behringer
(1993), Behringer and Baxter (1993), Behringer and Miller (1997) and Behringer et al. (1999). Man-made
materials have been treated as well. 1 For general overviews we refer the reader to Jaeger and Nagel
(1992a,b), Nagel (1992), Liu et al. (1991), Liu and Nagel (1993), Jaeger and Nagel (1993), Jaeger et al.
(1994, 1996a,b, 1997).
0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.06.020
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Recently, several modern applications, primarily driven by micro- and nanotechnology, have emerged
where a successful analysis requires the simulation of flowing granular media involving simultaneous
near-field interaction between charged particle, and momentum exchange through mechanical contact with
friction between grains. For example, for many materials, flowing grains below the one millimeter scale can
acquire relatively large electrostatic charges, leading to significant near-field forces between particles. 2

Charged material can lead to inconsistent ‘‘clean’’ manufacturing processes, for example, due to difficulties
with dust control, although intentional charging of granular material can be quite useful in some applica-
tion, for example involving electrostatic copiers, inkjet printers, powder coating machines, etc. The presence
of near-field interaction forces can produce granular flows that are radically different than purely contact-
driven scenarios. The determination of the dynamics of such materials is important for the accurate descrip-
tion of the flow of powders, which form the basis of nano- and microfabrication. Such near-field forces
can lead to grain clustering, resulting in inconsistent fabrication quality. Clearly, neglecting such near-
field effects can produce gross miscalculation of the power required to manipulate such flows. Thus, an
issue of overriding importance to the successful description of such granular flows is the development
of models and reliable techniques to rapidly computationally simulate the dynamics of multibody particu-
late systems involving near-field interaction and contact simultaneously. This is the focus of the present
work.
2. Granular flow in the presence of near-fields

We treat the grains as spherical particles, i.e. their rotation with respect to their mass centers is deemed
insignificant. 3 We consider a group of non-intersecting particles (n in total). The equations of motion,
for the ith particle in a granular flow, is
2 F
see Ta

3 H
mi€ri ¼ Wtot
i ðr1; r2; . . . ; rnÞ; ð2:1Þ
where ri is the position vector of the ith particle and where Wtot
i represents all forces acting on particle i. In

particular, Wtot
i ¼ Wnf

i þ Wcon
i þ Wfric

i represents the forces due to near-field interaction, normal contact
forces and friction. We consider the following relatively general central-force attraction–repulsion form
for the near-field forces induced by all particles on particle i
Wnf
i ¼

Xn
j 6¼i

a1kri � rjk�b1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
attraction

� a2kri � rjk�b2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
repulsion

0
B@

1
CA nij|{z}

unit vector

0
B@

1
CA; ð2:2Þ
where k Æk represents the Euclidean norm in R3, where all of the parameters, a�s and b�s, are non-negative,
and where the normal direction is determined by the difference in the position vectors of the particles� cen-
ters, nij ¼def rj�ri

kri�rjk.

2.1. Central-force properties

The force interaction of the form chosen is stable under certain conditions. We can consider stability to
insure that, for small disturbances, the system will remain near an equilibrium position, whereas unstable
or many engineering materials, some surface adhesion persists even when no explicit charging has occurred. For example,
bor (1975) or Johnson (1985).
enceforth, we use the term ‘‘grain’’ and ‘‘particle’’ interchangeably.
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equilibrium will cause the system to move away from an equilibrium position, with an increasing velocity.
Consider a potential function for a single particle, in one-dimensional motion, 4 attracted and repulsed
from a point r0 measured by the coordinate r,
4 E
V ¼ a1

�b1 þ 1
j r � r0j�b1þ1 � a2

�b2 þ 1
j r � r0j�b2þ1

; ð2:3Þ
whose derivative produces the form of interaction forces introduced earlier:
Wnf ¼ � oV
or

¼ ða1 j r � r0j�b1 � a2 j r � r0j�b2Þn; ð2:4Þ
where n ¼ r0�r
jr�r0j

. For stability, we require
o2V
or2

¼ �a1b1 j r � r0j�b1�1 þ a2b2 j r � r0j�b2�1
> 0: ð2:5Þ
A static equilibrium point, r = re, can be calculated by
Wnfðj re � r0 jÞ ¼ �a1 j re � r0j�b1 þ a2 j re � r0j�b2 ¼ 0; ð2:6Þ

which implies
j re � r0 j¼
a2

a1


 � 1
�b1þb2

: ð2:7Þ
Inserting Eq. (2.7) into Eq. (2.5) yields a restriction for stability
b2

b1

> 1: ð2:8Þ
Further properties of this type of potential are given in Appendix A.
3. Mechanical contact with near-field interaction

We now consider cases where mechanical contact occurs between particles, in the presence of near-field
interaction. A primary simplifying assumption is made: the particles remain spherical after impact, i.e. any
permanent deformation is negligible. For two colliding particles i and j, normal to the line of impact, a state-
ment for a balance of linear momentum relating the states before impact (time = t) and after impact
(time = t + dt) reads as
mivinðtÞ þ mjvjnðtÞ þ
Z tþdt

t
E i 	 nij dt þ

Z tþdt

t
Ej 	 nij dt ¼ mivinðt þ dtÞ þ mjvjnðt þ dtÞ; ð3:1Þ
where the subscript n denotes the normal component of the velocity (along the line connecting particle cen-
ters) and the E�s represent all forces induced by near-field interaction with other particles, as well as all
other external forces, if any, to the pair. If one isolates one of the members of the colliding pair, then
mivinðtÞ þ
Z tþdt

t
In dt þ

Z tþdt

t
Ei 	 nij dt ¼ mivinðt þ dtÞ; ð3:2Þ
ffectively, this is the motion in the normal direction, which is relevant for the central-force structure.
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Fig. 1. Compression and recovery of two impacting particles.
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where
R tþdt
t In dt is the total normal impulse due to impact. For a pair of particles undergoing impact, let us

consider a decomposition of the collision event (Fig. 1) into a compression (dt1) and recovery (dt2) phase,
i.e. dt = dt1 + dt2. Between the compression and recovery phases, the particles achieve a common velocity, 5

denoted vcn, at the intermediate time t + dt1. We may write for particle i, along the normal, in the compres-
sion phase of impact
5 A
betwee
mivinðtÞ þ
Z tþdt1

t
In dt þ

Z tþdt1

t
Ei 	 nij dt ¼ mivcn; ð3:3Þ
and in the recovery phase
mivcn þ
Z tþdt

tþdt1

In dt þ
Z tþdt

tþdt1

Ei 	 nij dt ¼ mivinðt þ dtÞ: ð3:4Þ
For the other particle (j), in the compression phase,
mjvjnðtÞ �
Z tþdt1

t
In dt þ

Z tþdt1

t
Ej 	 nij dt ¼ mjvcn; ð3:5Þ
and in the recovery phase
mjvcn �
Z tþdt

tþdt1

In dt þ
Z tþdt

tþdt1

Ej 	 nij dt ¼ mjvjnðt þ dtÞ: ð3:6Þ
This leads to an expression for the coefficient of restitution
e ¼def
R tþdt
tþdt1

In dtR tþdt1
t In dt

¼ miðvinðt þ dtÞ � vcnÞ � Einðt þ dt1; t þ dtÞ
miðvcn � vinðtÞÞ � Einðt; t þ dt1Þ

¼ �mjðvjnðt þ dtÞ � vcnÞ þ Ejnðt þ dt1; t þ dtÞ
�mjðvcn � vjnðtÞÞ þ Ejnðt; t þ dt1Þ

; ð3:7Þ
common normal velocity for particles should be interpreted as indicating that the relative velocity in the normal direction
n particle centers is zero.
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where
6 T
negligi
Einðt þ dt1; t þ dt2Þ ¼def
Z tþdt

tþdt1

Ei 	 nij dt;

Ejnðt þ dt1; t þ dt2Þ ¼
def
Z tþdt

tþdt1

Ej 	 nij dt;

Einðt; t þ dt1Þ ¼def
Z tþdt1

t
Ei 	 nij dt;

Ejnðt; t þ dt1Þ ¼def
Z tþdt1

t
Ej 	 nij dt:

ð3:8Þ
If we eliminate vcn, we obtain an expression for e
e ¼ vjnðt þ dtÞ � vinðt þ dtÞ þ Dijðt þ dt1; t þ dtÞ
vinðtÞ � vjnðtÞ þ Dijðt; t þ dt1Þ

; ð3:9Þ
where 6
Dijðt þ dt1; t þ dtÞ ¼def 1

mi
Einðt þ dt1; t þ dtÞ � 1

mj
Ejnðt þ dt1; t þ dtÞ;

Dijðt; t þ dt1Þ ¼
def 1

mi
Einðt; t þ dt1Þ �

1

mj
Ejnðt; t þ dt1Þ:

ð3:11Þ
Thus, we may rewrite Eq. (3.9) as
vjnðt þ dtÞ ¼ vinðt þ dtÞ � Dijðt þ dt1; t þ dtÞ þ eðvinðtÞ � vjnðtÞ þ Dijðt; t þ dt1ÞÞ: ð3:12Þ

It is convenient to denote the average force acting on the particle from external sources as
Ein ¼def
1

dt

Z tþdt

t
Ei 	 nij dt: ð3:13Þ
If e is explicitly known, then one can write, combining Eqs. (3.9) and (3.1)
vinðt þ dtÞ ¼ mivinðtÞ þ mjðvjnðtÞ � eðvinðtÞ � vjnðtÞÞÞ
mi þ mj

þ ðEin þ EjnÞdt � mjðeDijðt; t þ dt1Þ � Dijðt þ dt1; t þ dtÞÞ
mi þ mj

; ð3:14Þ
and, once vin(t + dt) is known, one can subsequently also solve for vjn(t + dt) via Eq. (3.12).

Remark 1. Later, it will be useful to define the average impulsive normal contact force between the
particles acting during the impact event as
In ¼
def 1

dt

Z tþdt

t
In dt; ð3:15Þ
his collapses to the classical expression for the ratio of the relative velocities before and after impact, if the near-field forces are
ble:

e ¼def vjnðt þ dtÞ � vinðt þ dtÞ
vinðtÞ � vjnðtÞ

: ð3:10Þ
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thus
7 A
In ¼
miðvinðt þ dtÞ � vinðtÞÞ

dt
� Ein: ð3:16Þ
In particular, as will be done later in the analysis, when we discretize the equations of motion with a discrete
(finite difference) time step of Dt, where dt 
 Dt, we shall define the impulsive normal contact contribution
to the total force (Eq. (2.1)) to be
Wcon ¼ Indt
Dt

nij; ð3:17Þ
which will be included in the total force acting on a particle, Wtot
i ¼ Wnf

i þ Wcon
i þ Wfric

i .

Remark 2. At the implementation level, 7 we choose dt = cDt, where 0 < c 
 1. This immediately allows
a definition for d t1 and dt2
dt1 þ dt2 ¼ dt1 þ edt1 ¼ dt ) dt1 ¼
cDt
1þ e

; ð3:18Þ
while dt2 ¼ ecDt
1þe. This is consistent with the fact that the recovery time of deformation tends toward zero for

e!0 (no recovery, asymptotically plastic), and tends toward equalling the compression time (dt1) as e!1
(asymptotically elastic). If e = 1, there is no loss in energy, while if e = 0 there is a maximum loss in energy.
4. Kinetic energy dissipation

Consider two identical particles approaching one another, in the absence of near-field interaction. One
can immediately write for the kinetic energy (T) before and after impact
T ðt þ dtÞ � T ðtÞ ¼ T ðtÞðe2 � 1Þ 6 0; ð4:1Þ

thus indicating the rather obvious fact that energy is lost with each subsequent impact for e < 1. Now con-
sider a group of flowing particles, each with different velocities. We may decompose the velocity of each
particle by (vcm ¼ 1

M

Pn
i¼1mivi and M ¼

Pn
i¼1mi)
viðtÞ ¼ vcmðtÞ þ dviðtÞ; ð4:2Þ

where vcm(t) is the mean velocity of the group of particles and dvi(t) is a purely fluctuating part of the veloc-
ity. For the entire group of particles at time = t
Xn

i¼1

miviðtÞ 	 viðtÞ ¼
Xn
i¼1

miðvcmðtÞ þ dviðtÞÞ 	 ðvcmðtÞ þ dviðtÞÞ

¼ MvcmðtÞ 	 vcmðtÞ þ 2vcmðtÞ 	
Xn

i¼1
midviðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼0

þ
Xn
i¼1

midviðtÞ 	 dviðtÞ: ð4:3Þ
For any later stage, the mean velocity (vcm) remains constant, and we have
Xn
i¼1

miðviðt þ dtÞ 	 viðt þ dtÞÞ ¼ MvcmðtÞ 	 vcmðtÞ þ
Xn
i¼1

midviðt þ dtÞ 	 dviðt þ dtÞ: ð4:4Þ
typical choice is 0.001 6 c 6 0.01.
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Subtracting Eq. (4.4) from Eq. (4.3) yields
8 F
Xn
i¼1

miviðt þ dtÞ 	 viðt þ dtÞ �
Xn
i¼1

miviðtÞ 	 viðtÞ

¼
Xn
i¼1

midviðt þ dtÞ 	 dviðt þ dtÞ �
Xn
i¼1

midvðtÞ 	 dviðtÞ

P e2
Xn
i¼1

midviðtÞ 	 dviðtÞ �
Xn
i¼1

midviðtÞ 	 dviðtÞ

¼ ðe2 � 1Þ
Xn
i¼1

midviðtÞ 	 dviðtÞ

P ðe2 � 1Þ
Xn
i¼1

miviðtÞ 	 viðtÞ; ð4:5Þ
where the first inequality arises due to the fact that not all particles will experience an impact from one stage
to the next, and where the second inequality arises due to the fact that the perturbation�s energy must be
smaller than the total. Thus, in the absence of near-field interaction, we should expect
e2 � 1 6
T ðt þ dtÞ � T ðtÞ

T ðtÞ 6 0: ð4:6Þ
Remark. In order to help characterize the overall behavior motion, it is advantageous to decompose the
kinetic energy per unit mass into the bulk motion of the center of mass and the motion relative to the center
of mass
T ðtÞ ¼ T ðtÞ
M

¼ 1

2
vcmðtÞ 	 vcmðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼def T b¼bulk motion energy

þ 1

2M

Xn

i¼1
midviðtÞ 	 dviðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼def T r¼relative motion energy

: ð4:7Þ
Clearly, the identification of ‘‘bulk’’ and ‘‘relative’’ parts is important in some applications, and this decom-
position provides a natural way of characterizing the granular flow. 8 We note that the system momentum
is conserved provided there are no external forces to the entire system. For values of e < 1 the relative mo-
tion will eventually ‘‘die out’’, if no near-field forces are present. Sometimes expressions of the formPn

i¼1mivi 	 vi �Mvcm 	 vcm ¼
Pn

i¼1midvi 	 dvi are termed ‘‘granular gas temperatures’’.
5. Incorporating friction

To incorporate frictional stick–slip phenomena during impact for a general particle pair (i and j), the
tangential velocities at the beginning of the impact time interval, time = t, are computed by subtracting
the relative normal velocity away from the total relative velocity:
vjtðtÞ � vitðtÞ ¼ ðvjðtÞ � viðtÞÞ � ððvjðtÞ � viðtÞÞ 	 nijÞnij: ð5:1Þ

One then writes the equation for tangential momentum change during impact for the ith particle
mivitðtÞ � I f dt þ Eit dt ¼ mivct; ð5:2Þ
or example in mixing processes.
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where the friction contribution is I f ¼ 1
dt

R tþdt
t I f dt, where the total contributions from all other particles in

the tangential direction (t) are Eit ¼ 1
dt

R tþdt
t Ei 	 tdt and where vct is the common tangential velocity of par-

ticles i and j in the tangential direction. 9 Similarly, for the jth particle we have
9 T
mjvjtðtÞ þ I f dt þ Ejt dt ¼ mjvct: ð5:3Þ

There are two unknowns, I f and vct. The main quantity of interest is I f , which can be solved for
I f ¼
Eit
mi
� Ejt

mj

� �
dt þ vitðtÞ � vjtðtÞ
1
mi
þ 1

mj

� �
dt

: ð5:4Þ
Thus, consistent with stick–slip models of Coloumb friction, one first assumes no slip occurs. If
j I f j> ls j In j, where ls P ld is the coefficient of static friction and ld is the dynamic coefficient of friction,
then slip must occur and a dynamic sliding friction model is used. If sliding occurs, the friction force is
assumed to be proportional to the normal force and opposite to the direction of relative tangent motion, i.e.
Wfric
i ¼def ldkWconk vjt � vit

kvjt � vitk
¼ �Wfric

j : ð5:5Þ
5.1. Limitations on friction coefficients

There are limitations on the friction coefficients for such models to make physical sense. For example,
reconsider the simple case of two identical particles (Fig. 2), in the absence of near-field forces approaching
one another with velocity v(t), which can be decomposed into normal and tangential components,
v(t) = vn(t)en + vt(t)et. Now consider the pre- and post-impact kinetic energy, which is identical for each
of the particles, assuming sliding (dynamic friction)
T ðtÞ ¼ 1
2
mðvnðtÞ2 þ vtðtÞ2Þ ð5:6Þ
and
T ðt þ dtÞ ¼ 1
2
mðvnðt þ dtÞ2 þ vtðt þ dtÞ2Þ: ð5:7Þ
Assuming sliding takes place, for either particle, the impulse–momentum relation in the normal direction
can be written as
mvnðtÞ þ
Z tþdt

t
In dt ¼ mvnðt þ dtÞ ð5:8Þ
and the tangential direction
mvtðtÞ �
Z tþdt

t
ldIn dt ¼ mvtðt þ dtÞ: ð5:9Þ
For the normal direction
Z tþdt

t
In dt ¼ mðvnðt þ dtÞ � vnðtÞÞ ¼ �ð1þ eÞmvnðtÞ: ð5:10Þ
Substituting this relation into the conservation of momentum in the tangential direction, we have
vtðt þ dtÞ ¼ vtðtÞ � ð1þ eÞvnðtÞld: ð5:11Þ
hey do not move relative to one another.
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Fig. 2. Two identical particles approaching one another.
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Now consider the restriction that the frictional forces cannot be so large that they reverse the initial tan-
gential motion. Mathematically, this restriction can be written as vt(t + dt) = vt(t)�(1 + e)vn(t)ld P 0,
which leads to the following expression:
ld 6
vtðtÞ

vnðtÞð1þ eÞ : ð5:12Þ
Thus, the dynamic coefficient of friction must be restricted in order to make physical sense. Qualitatively, as e
grows the restrictions on the coefficients of friction aremore severe, although, the author has determined that,
typically, values of ld 6 0.5 usually are acceptable for the applications considered. For more general analyses
on the existence and uniqueness of mechanical models involving friction see, for example, Oden and Pires
(1983), Martins and Oden (1987), Kikuchi and Oden (1988), Klarbring (1990) or Cho and Barber (1999).

5.2. Velocity-dependent coefficients of restitution

It is important to realize that, in reality, the phenomenological parameter e depends on the severity of
the impact velocity. For extensive experimental data, see Goldsmith (2001), or Johnson (1985) for a more
detailed analytical treatment. Qualitatively, the coefficient of restitution has behavior as shown in Fig. 3.
A mathematical idealization of the behavior can be constructed as follows:
e ¼def max e0 1� Dvn
v



 �
; e�


 �
: ð5:13Þ
where v* is a critical threshold velocity (normalization) parameter and where the relative velocity of
approach is defined by Dvn ¼def j vjnðtÞ � vinðtÞ j and e� is a lower limit to the coefficient of restitution.
IMPACT   VELOCITY

e –

EMPIRICALLY
OBSERVED

e

eo

IDEALIZATION

V*

Fig. 3. Qualitative behavior of the coefficient of restitution with impact velocity.
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Remark. In certain applications involving particle agglomeration in thermo-chemically reacting granular
media, it is advantageous to construct coefficient of restitution relations that are pressure and temperature
based, which include bonding as a limiting case as e!0. For example, development of ad hoc, empirically
derived relations involving the material�s Vicker�s hardness and temperature to determine whether two
particles bond can be found in Zohdi (2003a) and Zohdi (2003b), and are based on adhesion conditions
developed inNesterenko et al. (1994). SeeMeyers (1994) or Nesterenko (2001) for reviews on bonding criteria.
6. An iterative solution scheme

Implicit time-stepping methods, with time step size adaptivity, building on approaches found in Zohdi
(2003b), will be used throughout the upcoming analysis. Accordingly, after time discretization of the accel-
eration term in the equations of motion (Eq. (2.1)) for a particle
10 T
€rLþ1
i � rLþ1

i � 2rLi þ rL�1
i

ðDtÞ2
; ð6:1Þ
where, for brevity, we denote rLþ1
i ¼def riðt þ DtÞ, rLi ¼

def
riðtÞ, etc., one can arrive at the following abstract form,

for the entire system, AðrLþ1Þ ¼ F. It is convenient to write
AðrLþ1Þ �F ¼ GðrLþ1Þ � rLþ1 þ E ¼ 0; ð6:2Þ

where E is a remainder term which does not depend on the solution, i.e. E 6¼ EðrLþ1Þ. A straightforward
iterative scheme can be written as
rLþ1;K ¼ GðrLþ1;K�1Þ þ E; ð6:3Þ

where K = 1,2,3, . . . is the index of iteration within time step L + 1. The convergence of such a scheme is
dependent on the behavior of G. Namely, a sufficient condition for convergence is that G is a contraction
mapping for all rL+1,K, K = 1,2,3 . . . In order to investigate this further, we define the error as eL+1,K =
r L+1,K�rL+1. A necessary restriction for convergence is iterative self consistency, i.e. the exact solution
must be represented by the scheme GðrLþ1Þ þ E ¼ rLþ1. Enforcing this restriction, a sufficient condition
for convergence is the existence of a contraction mapping
keLþ1;Kk ¼ krLþ1;K � rLþ1k ¼ kGðrLþ1;K�1Þ � GðrLþ1Þk 6 gLþ1;KkrLþ1;K�1 � rLþ1k; ð6:4Þ

where, if gL+1,K < 1 for each iteration K, then eL+1,K!0 for any arbitrary starting value rL+1,K = 0 as
K!1. The type of contraction condition discussed is sufficient, but not necessary, for convergence. In
order to control convergence, we modify the discretization of the acceleration term: 10
€rLþ1 � _rLþ1 � _rL

Dt
�

rLþ1�rL

Dt � _rL

Dt
� rLþ1 � rL

Dt2
� _rL

Dt
: ð6:5Þ
Inserting this into m€r ¼ WtotðrÞ leads to
rLþ1;K � Dt2

m
WtotðrLþ1;K�1Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GðrLþ1;K�1Þ

þ rL þ Dt_rL
� �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

E

; ð6:6Þ
whose convergence is restricted by
his collapses to a stencil of €rLþ1 ¼ rLþ1�2rLþrL�1

ðDtÞ2 , when the time step size is uniform.
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g / EIGðGÞ / Dt2

m
: ð6:7Þ
Therefore, we see that the eigenvalues of G are (1) directly dependent on the strength of the interaction
forces, (2) inversely proportional to the mass and (3) directly proportional to (Dt)2. Therefore, if convergence
is slow within a time step, the time step size, an adjustable parameter, can be reduced by an appropriate
amount to increase the rate of convergence. Thus, decreasing the time step size improves the convergence,
however, we want to simultaneously maximize the time-step sizes to decrease overall computing time, while
still meeting an error tolerance. In order to achieve this goal, we follow an approach in Zohdi (2002) and
Zohdi (2003b) originally developed for continuum thermo-chemical multifield problems in which (1) one
approximates gL+1,K � S(Dt)p (S is a constant) and (2) one approximates the error within an iteration to
behave according to (S(Dt)p)KkeL+1,0k = keL+1,Kk, K = 1,2, . . . , where keL+1,0k is the initial norm of the
iterative error and S is a function intrinsic to the system. 11 Our goal is to meet an error tolerance in exactly
a preset number of iterations. To this end, one writes this in the following approximate form, (S(Dttol)

p)Kdke
L+1,0k = TOL, where TOL is a tolerance and where Kd is the number of desired iterations. 12 If the error
tolerance is not met in the desired number of iterations, the contraction constant gL+1,K is too large. Accord-
ingly, one can solve for a new smaller step size, under the assumption that S is constant,
Dttol ¼ Dt
TOL

keLþ1;0k

� � 1
pKd

keLþ1;Kk
keLþ1;0k

� � 1
pK

0
B@

1
CA: ð6:8Þ
The assumption that S is constant is not critical, since the time steps are to be recursively refined and unre-
fined repeatedly. Clearly, the expression in Eq. (6.8) can also be used for time step enlargement, if conver-
gence is met in less than Kd iterations.

6.1. Observations
Remark 3. Time-step size adaptivity is paramount, since the flow�s dynamics can dramatically change over
the course of time, requiring radically different time step sizes for a preset level of accuracy. However, one
must respect an upper bound dictated by the discretization error, i.e., Dt 6 Dtlim.

Remark 4. Classical solution methods require OðN 3Þ operations, whereas iterative schemes, such as the one
presented, typically require order Nq, where 1 6 q 6 2. For details see Axelsson (1994). Also, such solvers
are highly advantageous since solutions to previous time steps can be used as the first guess to accelerate the
solution procedure.

Remark 5. A recursive iterative scheme of Jacobi-type, where the updates are made only after one com-
plete iteration, was illustrated here only for algebraic simplicity. The Jacobi method is easier to address the-
oretically, while the Gauss–Seidel type method, which involves immediately using the most current values,
when they become available, is usually used at the implementation level. As is well-known that, under rel-
atively general conditions, if the Jacobi method converges, the Gauss–Seidel method converges at a faster
rate, while if the Jacobi method diverges, the Gauss–Seidel method diverges at a faster rate. For example,
see Axelsson (1994). The iterative approach presented can also be considered as a type of staggering
scheme. Staggering schemes have a long history in the computational mechanics community. For example,
or the class of problems under consideration, due to the quadratic dependency on Dt, p � 2.
ypically, Kd is chosen to be between 5 and 10 iterations.
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see Park and Felippa (1983), Zienkiewicz (1984), Schrefler (1985), Lewis et al. (1992), Doltsinis (1993,
1997), Piperno (1997), Lewis and Schrefler (1998), Le Tallec and Mouro (2001) and Zohdi (2002, 2004).

Remark 6. It is important to realize the Jacobi method is perfectly parallelizable. In other words, the cal-
culation for each particle are uncoupled, with the updates only coming afterward. Gauss–Seidel, since it
requires the most current updates, couples the particle calculations immediately. However, these methods
can be combined to create hybrid approaches, whereby the entire granular flow is partitioned into groups
and within each group a Gauss–Seidel method is applied. In other words, for a group, the positions of any
members from outside are initially frozen, as far as calculations involving members of the group are con-
cerned. After each isolated group�s solution (particle positions) has converged, computed in parallel, then
all positions are updated, i.e. the most current positions become available to all members of the granular
flow, and the isolated group calculations are repeated.

Remark 7. We observe that for the entire ensemble of members one has
Xn
i¼1

mi€ri ¼
Xn
i¼1

Wtot
i ðrÞ: ð6:9Þ
We may decompose the total force due to external sources and internal interaction, Wtot
i ðrÞ ¼

WEXT
i ðrÞ þ WINT

i ðrÞ, to obtain
Xn
i¼1

mi€ri ¼
Xn
i¼1

WEXT
i ðrÞ þ WINT

i ðrÞ
� �

¼
Xn
i¼1

WEXT
i ðrÞ þ

Xn

i¼1
WINT

i ðrÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼0

: ð6:10Þ
Thus, a consistency check can be made by tracking the condition, k
Pn

i¼1W
INT
i ðrÞk ¼ 0: This condition is

usually met to an extremely high degree by the temporally adaptive scheme introduced earlier. However,
this is only a necessary condition, but not sufficient, for zero error.

Remark 8. The alternative solution scheme would be to attempt to compute the solution by applying a
gradient-based scheme like Newton�s method. For the class of systems under consideration, there are dif-
ficulties with such an approach. For example, consider the residual RLþ1 ¼def AðrLþ1Þ �F. Linearization
leads to
RðrLþ1;KÞ ¼ RðrLþ1;K�1Þ þ ðrrRðrÞÞjrLþ1;K ðrLþ1;K � rLþ1;K�1Þ þ OðkDrk2Þ; ð6:11Þ
and thus the Newton updating scheme can be developed by enforcing RðrLþ1;KÞ � 0, leading to
rLþ1;K ¼ rLþ1;K�1 � ðATAN;Lþ1;K�1Þ�1
RðrLþ1;K�1Þ; ð6:12Þ
where ATAN;Lþ1;K�1 ¼ ðrrAðrÞÞjrLþ1;K�1 ¼ ðrrRðrÞÞjrLþ1;K�1 , is the tangent. Therefore, one has a fixed-point

operator of the form GðrÞ ¼ r� ðATANÞ�1
RðrÞ. For the problems considered, it is unlikely that the gradi-

ents of A remain positive definite, or even that A is continuously differentiable, due to the impact events.
Essentially, A will have non-convex and nondifferentiable dependence on the positions of the particles.
Thus, a fundamental difficulty is the possibility of a zero or non-existent tangent ðATANÞ. Therefore, while
Newton�s method usually converges at a faster rate than a direct fixed point iteration, quadratic as opposed
to superlinear, its range of applicability is less robust.

Remark 9. Convergence of an iterative scheme can sometimes be accelerated by relaxation methods.
The basic idea in relaxation methods is to introduce a relaxation parameter, c, into the iterations
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rLþ1;K ¼ cðGðrLþ1;K�1Þ þ EÞ þ ð1� cÞrLþ1;K�1: ð6:13Þ

Since the scheme must reproduce the exact solution we have
rLþ1 ¼ cðGðrLþ1Þ þ EÞ þ ð1� cÞrLþ1: ð6:14Þ

Subtracting Eq. (6.14) from Eq. (6.13) yields
rLþ1;K � rLþ1 ¼ cðGðrLþ1;K�1Þ � GðrLþ1ÞÞ þ ð1� cÞðrLþ1;K�1 � rLþ1Þ: ð6:15Þ

One then forms
krLþ1;K � rLþ1k 6 gckrLþ1;K�1 � rLþ1k; ð6:16Þ

where the parameter c is chosen such that gc

6 g, i.e. to induce faster convergence, relative to a relaxation-
free approach. The primary difficulty is that the selection of such c to induce faster convergence, if they
exist, is unknown a-priori. For even the linear theory, i.e. when G is a linear operator, such parameters
are unknown and are usually computed by empirical trial and error procedures. See Axelsson (1994) for
reviews.
6.2. Algorithmic implementation

An implementation of the process is as follows:
ð6:17Þ
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The overall goal is to deliver solutions where the iterative consistency error is controlled and the tempo-
ral discretization accuracy dictates the upper limits on the time step size (Dtlim).
7. Numerical simulation

In order to simulate a granular flow, we consider a group of n randomly positioned particles in a cube
with dimensions D · D · D. During the simulation of groups of particles, if a particle escapes from the con-
trol volume, the position component is reversed and the same velocity component is retained (now incom-
ing). Thus, for example, if the x component of the position vector exceeds the boundary of the control
volume, then rix = �rix is enforced. These are sometimes referred to as periodic boundary conditions.
The particle size and volume fraction are determined by a particle/sample size ratio, which is defined via
a subvolume size V ¼def D�D�D

n , where n is the number of particles. 13 The ratio between the radius (b) and

the subvolume are related by L ¼def b

V
1
3
. The volume fraction occupied by the particles is vf ¼

def 4pL3

3
. Thus,

the total volume occupied by the particles, denoted D, can be written as
13 D
14 A
D ¼ vfnV ; ð7:1Þ
and the mass total mass M ¼
Pn

i¼1mi ¼ qD, while that of an individual particle, assuming that all are the
same size, is
mi ¼
qD
n

¼ q
4

3
pb3i : ð7:2Þ
7.1. Simulation parameters

The relevant simulation parameters were

• number of particles = 100,
• initial mean velocity field = (1.0,0.1,0.1) m/s,
• initial random perturbations around mean velocity = (±1.0,±0.1,±0.1) m/s,
• length scale of the particles, L ¼ 0:25, with corresponding volume fraction vf ¼ 4pL3

3
¼ 0:0655 and

radius b = 0.0539,
• mass density of the particles = 2000 kg/m3,
• simulation duration = 1 s,
• initial time step size = 0.001 s,
• time step upper bound = 0.01 s.
• tolerance for the fixed-point iteration = 10�8.

We introduce the following (per unit mass2) decompositions for the key near-field parameters, for exam-
ple for the force imparted on particle i by particle j and vice versa 14

• a1ij ¼ a1mimj,
• a2ij ¼ a2mimj,
is normalized to unity in the simulations.
lternatively, if the near-fields are related to the amount of surface area, this scaling could be done per unit area.
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The parameters a1 and a2, which represent the strength of the near-field interaction forces per unit mass2,
were varied to investigate the near-field effects on the overall granular flow. During the simulations, we
enforced the stability condition in Eq. (2.8), by setting (b1,b2) = (1,2).

7.2. Results and observations

The starting configuration is shown in Fig. 4. Figs. 5 and 6 illustrate the computational results. The type
of motion, characterized by the proportions of bulk and relative kinetic energy in the system is dramatically
different with increasing severity of the near-field forces. 15 Notice that the kinetic energy per unit mass is
non-monotone when the near-field interactions are taken into account (Fig. 6). One may observe from Fig.
5, that as the near-field strength is increased, the component of the kinetic energy corresponding to the rel-
ative motion does not decay, and actually becomes dominant with time. Essentially, the near-field interac-
tion becomes strong enough that the purely flowing system experiences a transition to a vibrating ensemble.

This transition can be qualitatively examined by recognizing that the governing equations are formally sim-
ilar to classical, normalized, linear (or linearized) second order equations governing a one degree of free-
dom harmonic oscillator of the form
15 T
€r þ 2fxn _r þ x2
nr ¼

f ðtÞ
m

; ð7:3Þ
where xn ¼
ffiffiffi
k
m

q
, where r the position measured from equilibrium (r = 0), where k is the modulus of the

restoring force (kr), where m represents the mass, where f ¼ d
2mxn

, d being a constant of damping and where

f(t) is an external forcing term. The damped period of natural, force-free, vibration is Td ¼
def 2p

xd
, where

xd ¼
def

xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
is the ‘‘damped natural frequency’’. Using standard procedures in differential equations,

one performs the following decomposition into a homogeneous and particular part, r = rH + rP. The homo-
geneous part must satisfy €rH þ 2fxn _rH þ x2

nrH ¼ 0. Assuming the standard form rH = exp(kt), which upon
substitution into the governing equation yields k2 expðktÞ þ 2fxnk expðktÞ þ x2

n expðktÞ ¼ 0, leading to the
characteristic equation
k2 þ 2fxnk þ x2
n ¼ 0: ð7:4Þ
Solving for the roots yields k1;2 ¼ xnð�f �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

p
Þ. The general solution is r = A1exp(k1t) + A2exp(k2t).

Depending on the value of f, the solution will have one of three distinct types of behavior:

• f > 1, overdamped, leading to no oscillation, where the value of r approaches zero for large values of
time. Mathematically, k1 and k2 are negative numbers, thus rH ¼ A1 expðxnð�f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

p
ÞtÞþ

A2 expðxnð�f �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

p
ÞtÞ.

• f = 1, critically damped, leading to no oscillation, where the value of r approaches zero for large values
of time, however faster than the overdamped solution. Mathematically, k1 and k2 are equal real numbers,
k1 = k2 = �xn, thus rH = (A1 + A2t)exp(xnt).

• f < 1, underdamped, leading to damped oscillation, where the value of r approaches zero for large values
of time, in an oscillatory fashion. Mathematically, f2�1 < 0, thus rH ¼ A1 cosðxdtÞ þ A2 sinðxdtÞ.

Thus, under certain conditions, a granular flow can vibrate. The particular solution, generated by the
presence of externally applied forces, which satisfies the differential equation for a specific right-hand side
ypically, the simulations took under a minute on a single high performance laptop.
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Fig. 5. The proportions of the kinetic energy that are bulk and relative motion. Starting from left to right and top to bottom, with
e0 = 0.5, ls = 0.2, ld = 0.1: (1) no near-field interaction, (2) a1 ¼ 0:1 and a2 ¼ 0:05, (3) a1 ¼ 0:25 and a2 ¼ 0:125 and (4) a1 ¼ 0:5 and
a2 ¼ 0:25.

Fig. 4. The starting configuration for the granular flow.
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€rP þ 2fxn _rP þ x2
nrP ¼ f ðtÞ

m
; ð7:5Þ
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Fig. 6. The total kinetic energy in the system per unit mass. Starting from left to right and top to bottom, with e0 = 0.5, ls = 0.2,
ld = 0.1: (1) no near-field interaction, (2) a1 ¼ 0:1 and a2 ¼ 0:05, (3) a1 ¼ 0:25 and a2 ¼ 0:125 and (4) a1 ¼ 0:5 and a2 ¼ 0:25.
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For example if f ðtÞ ¼ f0 sinðXtÞ,
rP ¼ R sinðXt � /Þ; ð7:6Þ
where
R ¼ f0

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

x2
n

� �2

þ 2f X
xn

� �2
r ð7:7Þ
and
/ ¼ tan�1
2f X

xn

1� X2

x2
n

0
@

1
A: ð7:8Þ
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Thus, clearly, such granular systems may resonate if forced at certain frequencies. In order to qualitatively
tie this directly to the form of problem considered in this work, consider a linearization of a single nonlinear
differential equation, describing the attraction and repulsion from the origin (r0 = 0) of the form 16
16 T
m€r þ d _r ¼ WnfðrÞ; ð7:9Þ

where Wnf(r) = �a1r

�b1 + a2r
�b2 and where d is an effective dissipation term, which would arise from ine-

lastic impact and friction. Upon linearization of the non-linear interaction relation about a point r*,
WnfðrÞ � Wnfðr
Þ þ oWnf

or jr¼r

ðr � r
Þ þ Oðr � r
Þ, and normalizing the equations, we obtain
€r þ 2f
x

n _r þ ðx


nÞ
2r ¼ f 
ðtÞ

m
; ð7:10Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
where x

n ¼

�oWnf
or jr¼r

m , where f
 ¼ d

2mx

n
and where f 
ðtÞ ¼ Wnfðr
Þ � oWnf

or jr¼r

r
. For the specific interaction

form chosen we have
x

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a1b1r

�b1�1

 þ a2b2r

�b2�1



m

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a1mb1r

�b1�1

 þ a2mb2r

�b2�1



q
; ð7:11Þ
and where the ‘‘loading’’ is
f 
ðtÞ ¼ �a1r�b1

 þ a2r�b2


 � a1b1r
�b1�1

 þ a2b2r

�b2�1

 : ð7:12Þ
We note that if the following special choice of parameters, as in the preceding simulations, is made,
(b1,b2) = (1,2), and r* is chosen as the static equilibrium point, re, given by Eq. (2.7), then r
 ¼ re ¼ a2

a1
, and
x

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

a1
a2

� �2

m

vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

m
a1

a2


 �2
s

¼def
ffiffiffiffiffi
k


m

r
; ð7:13Þ
where k
 ¼def a1
a1
a2

� �2

. Thus, in the preceding examples, when we had kept the ratio a1
a2

constant, however

increasing a1 (while keeping m constant), we were effectively increasing the ‘‘stiffness’’ in the system and
the amount of (pre-)stored energy available to counteract dissipation. Clearly, under certain conditions,
a granular flow may ‘‘pulse’’ (oscillate) or decay depending on the character of the interaction and the con-
tact parameters. Thus, non-monotone behavior is not unexpected for the multibody system (Fig. 6). We
remark that, increasingly smaller x


n indicates that the system tends toward a ‘‘regular’’ (near-field free)
granular flow. Smaller x


n would occur with heavier particles or smaller attractive forces, and larger values
of f* (more damped) will occur when increased friction or smaller restitution coefficients are present in the
flow. Clearly, key dimensionless parameters, like f*, which characterize the oscillatory behavior, and thus
relative, fluctuating, motion with respect to the mean, within the the granular flow.
8. Inverse problems/parameter identification

An important aspect of any model is the inverse problem of identification of parameters which force the
system behavior to match a target response. In the ideal case, one would like to determine the type of near-
field interaction that produces certain granular flow characteristics, via numerical simulations, in order to
minimize time-consuming laboratory tests. As a representative of a class of model problems, consider in-
verse problems whereby the parameters in the near-field interaction representation are sought, the a�s
and b�s, which deliver a target granular flow behavior by minimizing a normalized cost function
he unit normal has been taken into account, thus the presence of a change in sign.
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P ¼

RT

0 j A� A
 j dt
� �

RT

0 j A
 j dt
; ð8:1Þ
where total simulation time isT, whereA is a computationally generated quantity of interest and whereA* is
the target response. Typically, for the class of problems considered in this work, formulations such as in Eq.
(8.1) depend in a non-convex and non-differentiable manner, on the a�s and b�s. This is primarily due to the
physics of sudden intergranular impact and transient dynamics. Clearly, we have restrictions on the para-
meters in the near-field interaction a�

1 or 2 6 a1 or 2 6 aþ
1 or 2 and b�

1 or 2 6 b1 or 2 6 bþ
1 or 2, where a�

1 or 2, aþ
1 or 2,

b�
1 or 2 and bþ

1 or 2 are the lower and upper limits coefficients in the interaction forces. 17 With respect to the
minimization of Eq. (8.1), classical gradient-based deterministic optimization techniques are not robust,
due to difficulties with objective function non-convexity and non-differentiability. Classical gradient-based
algorithms are likely to converge only toward a local minimum of the objective functional if an accurate ini-
tial guess to the global minimum is not provided. Also, usually it is extremely difficult to construct an initial
guess that lies within the (global) convergence radius of a gradient-based method. These difficulties can be
circumvented by the use of a certain class of non-derivative search methods, usually termed ‘‘genetic’’ algo-
rithms (GA), before applying gradient-based schemes. Genetic algorithms are search methods based on the
principles of natural selection, employing concepts of species evolution, such as reproduction, mutation and
crossover. Implementation typically involves a randomly generated population of fixed-length elemental
strings, ‘‘genetic information’’, each of which represents a specific choice of system parameters. The popu-
lation of individuals undergo ‘‘mating sequences’’ and other biologically-inspired events in order to find
promising regions of the search space. There are a variety of such methods, which employ concepts of species
evolution, such as reproduction, mutation and crossover. Such methods primarily stem from the work of
John Holland (Holland, 1975). For reviews of such methods, see, for example, Goldberg (1989), Davis
(1991), Onwubiko (2000),Kennedy and Eberhart (2001) and Goldberg and Deb (2000).

8.1. A genetic algorithm

As examples of objective functions that one might minimize, consider:

• Overall energetic behavior per unit mass:
PE ¼
RT

0
j T � T


 j dtRT

0
T



dt

; ð8:2Þ
where total simulation time is T and where T


is a target value.

• Energy component distribution, for the relative motion part
PEr ¼
RT

0
j T r � T 


r j dtRT

0
T 


r dt
; ð8:3Þ
and for the bulk motion part
PEb ¼
RT

0
j T b � T 


b j dtRT

0
T 


b dt
; ð8:4Þ
where the fraction of kinetic energy due to relative motion is Tr, where the fraction of kinetic energy due to
bulk motion is Tb, and where T 


r and T 

b are the target values.
dditionally, we could also vary the other parameters in the system, such as the friction, particle densities, drag, etc. However,
ll fix these parameters during the upcoming examples.
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Compactly, one may write
P ¼ wEPE þ wErPEr þ wEbPEb

wE þ wEr þ wEb

: ð8:5Þ
Adopting the approaches found in Zohdi Zohdi (2003a,b,c, in press), a genetic algorithm has been devel-
oped to treat non-convex inverse problems involving various aspects of multi-particle mechanics. The cen-
tral idea is that the system parameters form a genetic string and a survival of the fittest algorithm is applied
to a population of such strings. The overall process is (a) a population (S) of different parameter sets are
generated at random within the parameter space, each represented by a (‘‘genetic’’) string of the system (N)
parameters, (b) the performance of each parameter set is tested, (c) the parameter sets are ranked from top
to bottom according to their performance, (d) the best parameter sets (parents) are mated pairwise produc-
ing two offspring (children), i.e. each best pair exchanges information by taking random convex combina-
tions of the parameter set components of the parents� genetic strings and (e) the worst performing genetic
strings are eliminated, new replacement parameter sets (genetic strings) are introduced into the remaining
population of best performing genetic strings and the process (a–e) is then repeated. The term ‘‘fitness’’ of a
genetic string is used to indicate the value of the objective function. The most fit genetic string is the one
with the smallest objective function. The retention of the top fit genetic strings from a previous generation
(parents) is critical, since if the objective functions are highly non-convex (the present case), there exists a
clear possibility that the inferior offspring will replace superior parents. When the top parents are retained,
the minimization of the cost function is guaranteed to be monotone (guaranteed improvement) with
increasing generations. There is no guarantee of successive improvement if the top parents are not
retained, even though non-retention of parents allows more new genetic strings to be evaluated in the next
generation. Numerical studies conducted by the author imply that, for sufficiently large populations, the
benefits of parent retention outweigh this advantage and any disadvantages of ‘‘inbreeding’’, i.e. a stagnant
population. For more details on this so-called ‘‘inheritance property’’ see Davis (1991) or Kennedy and
Eberhart (2001). In the upcoming algorithm, inbreeding is mitigated since, with each new generation,
new parameter sets, selected at random within the parameter space, are added to the population. Previous
numerical studies of the author (Zohdi, 2003c) have indicated that not retaining the parents is suboptimal
due to the possibility that inferior offspring will replace superior parents. Additionally, parent retention is
computationally less expensive, since these parameter sets do not have to be reevaluated in the next
generation.

An implementation of such ideas is as follows (Zohdi, 2003a,b,c, in press):

• Step 1: Randomly generate a population of S starting genetic strings, Ki ði ¼ 1; . . . ; SÞ :
Ki ¼def fKi

1;K
i
2; Ki

3;K
i
4; . . . ;K

i
Ng ¼ fai

1; b
i
1; a

i
2; b

i
2; . . .g.

• Step 2: Compute fitness of each string P(Ki) (i = 1, . . . ,S).
• Step 3: Rank genetic strings: Ki (i = 1, . . . ,S).
• Step 4: Mate nearest pairs and produce two offspring (i = 1, . . . ,S).

ki ¼def UðIÞKi þ ð1� UðIÞÞKiþ1, kiþ1 ¼def UðIIÞKi þ ð1� UðIIÞÞKiþ1

• Note: U(I) and U(II) are random numbers, such that 0 6 U(I),U(II)
6 1, which are different for each com-

ponent of each genetic string.
• Step 5: Kill off bottom M < S strings and keep top K < N parents and top K offspring (Koffspring + K

parents + M = S).
• Step 6: Repeat STEPS 1–6 with top gene pool (K offspring and K parents), plus M new, randomly

generated, strings.
• Option: Rescale and restart search around best performing parameter set every few generations.
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• Option: We remark that gradient-based methods are sometimes useful for post-processing solutions
found with a genetic algorithm, if the objective function is sufficiently smooth in that region of the
parameter space. In other words, if one has located convex portion of the parameter space with a global
genetic search, one can employ gradient-based procedures locally to minimize the objective function fur-
ther. In such procedures, in order to obtain a new directional step for K, one must solve the following
system, ½H�fDKg ¼ �fgg, where ½H� is the Hessian matrix (N · N), where {DK} is the parameter incre-
ment (N · 1), and {g} is the gradient (N · 1). We shall not employ this second (post-genetic) stage in this
work. An exhaustive review of these methods can be found in the well-known texts of Luenberger (1974)
or Gill et al. (1995).
Remarks. It is important to scale the system variables, for example, to be positive numbers and of
comparable magnitude, in order to avoid dealing with large variations in the parameter vector
components. Typically, for granular flows with a finite number of particles, there will be slight
variations in the performance for different random starting configurations. In order to stabilize the
objective function�s value with respect to the randomness of the flow starting configuration, for a given
parameter selection (K, characterized by the a�s and b�s), a regularization procedure is applied within the
genetic algorithm, whereby the performances of a series of different random starting configurations are
averaged until the (ensemble) average converges, i.e. until the following condition is met:

1
Eþ1

PEþ1
i¼1 PðiÞðKIÞ�

��� 1
E

PE
i¼1P

ðiÞðKIÞj 6 TOL 1
Eþ1

PEþ1
i¼1 PðiÞðKIÞ

��� ���, where index i indicates a different

starting random configuration (i = 1,2, . . . ,E) that has been generated and E indicates the total number
of configurations tested. In order to implement this in the genetic algorithm, in STEP 2, one simply
replaces compute with ensemble compute, which requires a further inner loop to test the performance of
multiple starting configurations. Similar ideas have been applied to randomly dispersed particulate
media in Zohdi (2003a,b,c, in press).
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Fig. 7. The best parameter set�s (a1, a2,b1,b2) objective function value with passing generations.



Table 1
The optimal coefficients of attraction and repulsion for the granular flow and the top six fitnesses

Rank a1 b1 a2 b2 P

1 0.35935 0.67398 0.25659 1.58766 0.065228
2 0.31214 0.67816 0.22113 1.65054 0.065690
3 0.30032 0.54474 0.22240 1.51649 0.070433
4 0.31143 0.57278 0.25503 1.36696 0.073200
5 0.32872 0.74653 0.25560 1.56315 0.078229
6 0.30580 0.74276 0.27228 1.36962 0.090701
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Fig. 8. Simulation results using the best parameter set�s (a1, a2,b1,b2) values (for one random realization).
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8.2. A numerical example

We considered a search space of 0 6 a1 6 1, 0 6 b1 6 1, 0 6 a2 6 1 and 1 6 b2 6 2. Recall the stability
restriction on the exponents were b2

b1
> 1, thus the choice of the range of search. As in the previous simula-

tions, 100 particles, with periodic boundary conditions were used. The total time was set to be one second
ðT ¼ 1Þ. The starting state values of the system were the same as in the previous examples. The target
objective (behavior) values where constants: ðT 


; T 

b; T



r Þ ¼ ð1:0; 0:5; 0:5Þ. Such an objective can be inter-

preted as forcing a system with given initial behavior to adapt to a different type of behavior within a given
time interval. The number of genetic strings in the population was set to 20, for 20 generations, allowing six
offspring of the top six parents, along with their parents, to proceed to the next generation. Therefore, after
each generation, eight entirely new genetic strings are introduced. Every 10 generations, the search was re-
scaled around the best parameter set, and the search restarted. Fig. 7 and Table 1 depict the results. A total
of 310 parameter selections were tested. The total number of strings tested was 1757, thus requiring an aver-
age of 5.68 strings per parameter selection for the ensemble averaging stabilization. The behavior of the
best parameter selection�s response is shown in Fig. 8.
9. Concluding remarks

In the this work, a general model was developed for the impact of charged granular media. The specific
structure of the interaction forces chosen was only one of many possibilities to model NF-granular flow
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behavior. Other potentials, to produce the interaction forces, for example, from the field of molecular
dynamics (MD), are possible. For an extensive survey of MD-type interaction forces, which includes com-
parisons of the theoretical and computational properties of each interaction law, we refer the reader to
Frenklach and Carmer (1999). The analogy between granular flow dynamics and molecular dynamics
(MD) of an atomistic chemical system is inescapable. In the usual MD approach (see Haile, 1992, for exam-
ple), the motion of individual atoms is described by the Newton�s Second Law with the forces computed
from a prescribed potential energy function, V(r), m€r ¼ �rV ðrÞ. The MD approach has been applied to
description of all material phases: solids, liquids, and gases, as well as biological systems (Hase, 1999;
Schlick, 2000). For instance, a Fourier transform of the velocity autocorrelation function specifies ‘‘bulk’’
diffusion coefficient (Rapaport, 1995). The mathematical form of more sophisticated potentials to produce
interaction forces, Wnf = �$V, are rooted in the expansion,
V ¼
X
i;j

V 2 þ
X
i;j;k

V 3 þ 	 	 	 ; ð9:1Þ
where V2 is the binary, V3 tertiary, etc., potential energy functions, and the summations are taken over
corresponding combinations of atoms. The binary functions usually take the form of the familiar Mie,
Lennard-Jones, and Morse potentials (Moelwyn-Hughes, 1961). The expansions beyond the binary inter-
actions introduce either three-body terms directly (Stillinger and Weber, 1985) or as ‘‘local’’ modifications
of the two-body terms (Tersoff, 1988). Clearly, the inverse parameter identification technique presented is
applicable to such representations, however with more adjustable search parameters. For examples with
significantly more search parameter complexity, see Zohdi (2003a,b,c, in press).
Appendix A. Properties of a potential

A force field Wnf is said to be conservative if and only if there exists a continuously differentiable scalar
field V such that Wnf = �$V. If the force field is conservative, with potential V, then a necessary and suf-
ficient condition for a particle to be in equilibrium at that point is that
Wnf ¼ �rV ¼ 0; ðA:1Þ

in other words oV

ox1
¼ 0, oV

ox2
¼ 0 and oV

ox3
¼ 0. Forces acting on a particle that are (1) always directed toward

or away another point and (2) whose magnitude depend only on the distance between the particle and
the point of attraction/repulsion are called central forces. They have the form
Wnf ¼ �Cðkr� r0kÞ
r� r0

kr� r0k
¼ Cðkr� r0kÞn; ðA:2Þ
where r is the position of the particle, where r0 is the position of a point of attraction/repulsion and where
n ¼ r0�r

kr�r0k
. The central force is one of attraction if Cðkr� r0kÞ > 0 and one of repulsion if Cðkr� r0kÞ < 0.

We remark that a central force field is always conservative, since $ · Wnf = 0. For example, consider
V ¼ a1kr� r0k�b1þ1

�b1 þ 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
attraction

� a2kr� r0k�b2þ1

�b2 þ 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
repulsion

; ðA:3Þ
where all of the parameters, a�s and b�s, are non-negative. The gradient yields
�rV ¼ Wnf ¼ ða1kr� r0k�b1 � a2kr� r0k�b2Þn; ðA:4Þ

which is the form used in the text. If a particle which is displaced slightly from an equilibrium point tends to
return to that point, then we call that point a point of stability or stable point and the equilibrium is said to
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be stable. Otherwise we say that the point is one of instability and the equilibrium is unstable. A necessary

and sufficient condition that an equilibrium point be one of stability is that the potential V at the point be a

minimum. The general condition by which a potential is stable for the multidimensional case can be deter-
mined by studying the properties of the Hessian,
½H� ¼def

o2V
ox1ox1

o2V
ox1ox2

o2V
ox1ox3

o2V
ox2ox1

o2V
ox2ox2

o2V
ox2ox3

o2V
ox3ox1

o2V
ox3ox2

o2V
ox3ox3

2
66664

3
77775; ðA:5Þ
around an equilibrium point. A sufficient condition for V to attain a minimum at an equilibrium point is
that the Hessian be positive definite (which implies that V is locally convex). For more details see Hale and
Kocak (1991).

Remark. Clearly, the central force potential chosen in this work is stable for motion in the normal
direction, i.e. the line connecting the centers of the particles. For disturbances in directions orthogonal to
the normal direction, the potential is neutrally stable, i.e. the Hessian�s determinant is zero, thus indicating
that the potential does not change for such perturbations.
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